Use llama.cpp from 4D
llama.cpp is an open-source project that allows you to run Meta’s LLaMA language models locally on CPUs without heavy frameworks like PyTorch or TensorFlow. Essentially, it’s a lightweight C++ implementation optimized for inference.
Instantiate cs.llama.llama in your On Startup database method:
var $llama : cs.llama.llama
If (False)
$llama:=cs.llama.llama.new() //default
Else
var $homeFolder : 4D.Folder
$homeFolder:=Folder(fk home folder).folder(".GGUF")
var $file : 4D.File
var $URL : Text
var $port : Integer
var $huggingface : cs.event.huggingface
var $event : cs.event.event
$event:=cs.event.event.new()
/*
Function onError($params : Object; $error : cs.event.error)
Function onSuccess($params : Object; $models : cs.event.models)
Function onData($request : 4D.HTTPRequest; $event : Object)
Function onResponse($request : 4D.HTTPRequest; $event : Object)
Function onTerminate($worker : 4D.SystemWorker; $params : Object)
*/
$event.onError:=Formula(ALERT($2.message))
$event.onSuccess:=Formula(ALERT($2.models.extract("name").join(",")+" loaded!"))
$event.onData:=Formula(LOG EVENT(Into 4D debug message; This.file.fullName+":"+String((This.range.end/This.range.length)*100; "###.00%")))
$event.onData:=Formula(MESSAGE(This.file.fullName+":"+String((This.range.end/This.range.length)*100; "###.00%")))
$event.onResponse:=Formula(LOG EVENT(Into 4D debug message; This.file.fullName+":download complete"))
$event.onResponse:=Formula(MESSAGE(This.file.fullName+":download complete"))
$event.onTerminate:=Formula(LOG EVENT(Into 4D debug message; (["process"; $1.pid; "terminated!"].join(" "))))
/*
embeddings
*/
$port:=8083
$folder:=$homeFolder.folder("jina-embeddings-v4-text-matching-Q4_K_M") //where to keep the repo
$path:="jina-embeddings-v4-text-matching-Q4_K_M.gguf" //path to the file
$URL:="jinaai/jina-embeddings-v4-text-matching-GGUF" //path to the repo
$huggingface:=cs.event.huggingface.new($folder; $URL; $path)
$huggingfaces:=cs.event.huggingfaces.new([$huggingface])
$options:={\
embeddings: True; \
pooling: "mean"; \
threads: 4; \
threads_batch: 4; \
threads_http: 4; \
log_disable: True; \
n_gpu_layers: -1}
$llama:=cs.llama.llama.new($port; $huggingfaces; $homeFolder; $options; $event)
/*
chat completion
*/
$port:=8082
$folder:=$homeFolder.folder("Llama-3.2-3B-Instruct-Q4_K_M") //where to keep the repo
$path:="Llama-3.2-3B-Instruct-Q4_K_M.gguf" //path to the file
$URL:="hugging-quants/Llama-3.2-3B-Instruct-Q4_K_M-GGUF" //path to the repo
$huggingface:=cs.event.huggingface.new($folder; $URL; $path)
$huggingfaces:=cs.event.huggingfaces.new([$huggingface])
$options:={\
ctx_size: 32768; \
batch_size: 4096; \
threads: 4; \
threads_batch: 4; \
threads_http: 4; \
temp: 0.3; \
top_k: 40; \
top_p: 0.9; \
log_disable: True; \
repeat_penalty: 1; \
n_gpu_layers: -1; \
jinja: True; \
flash_attn: "on"; \
cache_type_v: "q8_0"; \
cache_type_k: "q8_0"}
$llama:=cs.llama.llama.new($port; $huggingfaces; $homeFolder; $options; $event)
End if
Unless the server is already running (in which case the costructor does nothing), the following procedure runs in the background:
llama-server program is startedNow you can test the server:
curl -X POST http://127.0.0.1:8083/v1/embeddings \
-H "Content-Type: application/json" \
-d '{"input":"The quick brown fox jumps over the lazy dog."}'
Or, use AI Kit:
var $AIClient : cs.AIKit.OpenAI
$AIClient:=cs.AIKit.OpenAI.new()
$AIClient.baseURL:="http://127.0.0.1:8080/v1"
var $text : Text
$text:="The quick brown fox jumps over the lazy dog."
var $responseEmbeddings : cs.AIKit.OpenAIEmbeddingsResult
$responseEmbeddings:=$AIClient.embeddings.create($text)
Finally to terminate the server:
var $llama : cs.llama.llama
$llama:=cs.llama.llama.new()
$llama.terminate()
llama-server supports OCR if you use a model converted to .gguf. Q4_K_M is generally considered a best level of quantisation for OCR. However, llama-server does not support the /v1/files API so you need to reference the image via a data URI in your chat completion request.
The API is compatibile with Open AI.
| Class | API | Availability |
|---|---|---|
| Models | /v1/models |
✅ |
| Chat | /v1/chat/completions |
✅ |
| Images | /v1/images/generations |
|
| Moderations | /v1/moderations |
|
| Embeddings | /v1/embeddings |
✅ |
| Files | /v1/files |